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Abstract. When we have only interval ranges �x�xi� of sample values x1�����xn, what is the
interval �V �V � of possible values for the variance V of these values? We show that the problem
of computing the upper bound V is NP-hard. We provide a feasible (quadratic time) algorithm
for computing the exact lower bound V on the variance of interval data. We also provide feasible
algorithms that computes V under reasonable easily verifiable conditions, in particular, in case
interval uncertainty is introduced to maintain privacy in a statistical database. We also extend the
main formulas of interval arithmetic for different arithmetic operations x1 op x2 to the case when,
for each input xi, in addition to the interval xi= �xi�xi� of possible values, we also know its mean
Ei (or an interval Ei of possible values of the mean), and we want to find the corresponding bounds
for y=x1 op x2 and its mean. In this case, we are interested not only in the bounds for y, but also
in the bounds for the mean of y. We formulate and solve the corresponding optimization problems,
and describe remaining open problems.
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1. Introduction: data processing — from computing to probabilities to
interval

1.1. WHY DATA PROCESSING?

In many real-life situations, we are interested in the value of a physical quantity
y that is difficult or impossible to measure directly. Examples of such quantities
are the distance to a star and the amount of oil in a given well. Since we cannot
measure y directly, a natural idea is to measure y indirectly. Specifically, we find
some easier-to-measure quantities x1�����xn which are related to y by a known
relation y=f �x1�����xn; this relation may be a simple functional transforma-
tion, or complex algorithm (e.g., for the amount of oil, numerical solution to an
inverse problem). Then, to estimate y, we first measure the values of the quantities
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xi�����xn, and then we use the results x̃1�����x̃n of these measurements to to
compute and estimate ỹ for y as ỹ=f �x̃1�����x̃n.

For example, to find the resistance R, we measure current I and voltage V , and
then use the known relation R=V/I to estimate resistance as R̃= Ṽ /Ĩ .

Computing as estimate for y based on the results of direct measurements is
called data processing; data processing is the main reason why computers were
invented in the first place, and data processing is still one of the main uses of
computers as number crunching divices
Comment. In this paper, for simplicity, we consider the case when the relation

between xi and y is known exactly; in some practical situations, we only know an
approximate relation between xi and y

1.2. WHY INTERVAL COMPUTATIONS? FROM COMPUTING TO PROBABILITIES
TO INTERVALS

Measurement are never 100% accurate, so in reality, the value xi of ith measured
quantity can differ form the measurement result x̃i. Because of these measurement
errors �xi

def= x̃i−xi, the result ỹ=f �x̃1�����x̃n of data processing is, in general,
different from the actual value y=�x1�����xn of the desired quantity y [14].

It is desirable to describe the error �y
def= ỹ−y of the result of data processing.

To do that, we must have some information about the errors of direct measurement.
What do we know about the errors �xi of direct measurements? First, the manu-

facturer of the measuring instrument must supply us with an upper bound �i on the
measurement error. If no such upper bound is supplied, this means that no accuracy
is guaranteed, and the corresponding “measuring instrument” is practically useless.
In this case, once we performed ameasurement and got a measurement result x̃i, we
know that the actual (unknown) value xi of the measured quantity belongs to the
interval xi= �xi�xi�, where xi= x̃i−�i and xi= x̃i+�i.

In many practical situations, we not only know the interval �−�i��i� of pos-
sible values of the measurement error; we also know the probability of different
values �xi within this interval. The knowledge underlies the traditional engineer-
ing approach to estimating the error of indirect measurement, in which we assume
that we know the probability distributions for measurement errors �xi.

In practice, we can determine the desired probabilities of different values of
�xi by comparing the results of measuring with this instrument with the results
of measuring the same quantity by a standard (much more accurate) measuring
instrument. Since the standard measuring instrument is much more accurate than
the one used, the difference between these two measurement results is practically
equal to the measurement error; thus, the empirical distribution of this difference
is close to the desired probability distribution for measurement error. The are two
cases, however, when this determination is not done:
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• First is the case of cutting-edge measurements, e.g., measurements in fun-
damental science. When a Hubble telescope detects the light from a distant
galaxy, there is no “standard” (muchmore accurate) telescope floating nearby
that we can use to calibrate the Hubble: the Hubble telescope is the best we
have.

• The second case is the case of measurements on the shop floor. In this case, in
principle, every sensor can be thoroughly calibrated, but sensor calibration
is so costly — usually costing ten times more than the sensor itself — that
manufacturers rarely do it.

In both cases, we have no information about the probabilities of �xi; the only
information we have is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i,
the only information that we gave about the actual value xi of themeasured quantity
is that it belongs to the interval xi= �x̃i−�i�x̃i+�i�. In such situations, the only
information that we have about the (unknown) actual value of y=f �x1�����xn
is that y belongs to the range y= �y�y� of the function f over the box x1×···×xn:

y= �y�y�=�f �x1�����xn�x1∈x1�����xn∈xn�

The process of computing this interval range based on the input intervals xi is
called interval computations; see e.g. [3–5,10].

1.3. INTERVAL COMPUTATIONS AS AN OPTIMIZATION PROBLEM

The main problem of interval computations can be naturally reformulated as an op-
timization problem. Indeed, y is the solution to the following problem:
f �x1�����xn→min, under the conditions

x1�x1�x1�···xn�xn�xn�

and y is the condition to the maximization problem f �x1�����xn→max under
the same conditions.

1.4. INTERVAL COMPUTATIONS TECHNIQUES: BRIEF REMINDER

Historically, the first method for computing the enclosure for the range is the
method which is sometimes called “straightforward” interval computations. This
method is based on the fact that inside the computer, every algorithm consists of
elementary operations (arithmetic operations, min, max, etc.). For each elementary
operation f �a�b, if we know the intervals a and b for a and b, we can compute
the exact range f �a�b. The corresponding formulas form the so-called interval
arithmetic. For example

�a�a�+�b�b�= �a+b�a+b�� �a�a�−�b�b�= �a−b�a−b��

�a�a�·�b�b�= �min�a ·b�a·b�a·b�a·b�max�a ·b�a·b�a·b�a·b�
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In straightforward interval computations, we repeat the computations forming the
program f step-by-step, replacing each operation with real numbers by the cor-
responding operation of interval arithmetic. It is known that, as a result, we get an
enclosure Y⊇y for the desired range.

In some cases, this enclosure is exact. In more complex cases (see examples
below), the enclosure has excess width.

There exist more sophisticated techniques for producing a narrower enclosure,
e.g., a centered form method. However, for each of these techniques, there are
cases when we get an excess width. Reason: as shown in [7,16], the problem of
computing the exact range is known to be NP-hard even for polynomial functions
f �x1�··· �xn (actually, even for quadratic functions f ).

1.5. WHAT WE ARE PLANNING TO DO?

First, we analyze a specific interval computations problem — when we use tradi-
tional statistical data processing algorithms f �x1�··· �xn to process the results of
direct measurements.

Then, we extend our analysis to the case when for each input xi, in addition
to the interval xi= �xi�xi� of possible values, we have partial information about
the probabilities: specifically, we know its mean Ei (or an interval Ei of possible
values of the mean).

We formulate and solve the corresponding optimization problems, and describe
remaining open problems.

2. First step beyond intervals: error estimation for traditional statistical
data processing algorithms under interval uncertainty

When we have n results x1�����xn of repeated measurement of the same quantity
(at different points, or at different moments on time), traditional statistical approach
usually starts with computing their sample average E=�x1+···+xn/n and their
(sample) variance

V = �x1−E2+···+�xn−E2

n
(1)

(or, equivalently, the sample standard deviation �=√
V ); see e.g. [14].

In this section, we consider situations when we do not know the exact values of
the quantities x1�����xn, we only know the intervals x1�����xn of possible values
of xi. In such situations, for different possible values xi∈xi, we get different
values of E and V . The question is: what are the intervals E and E of possible
values of E and V .

The practical importance of this question was emphasized, e.g. in [11,12] on the
example of processing geophysical data.
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For E, the straightforward interval computations lead to the exact range:

E= x1+···+xn

n
� i�e��E= x1+···+xn

n
� and E= x1+···+xn

n
�

For V , straightforward interval computations lead to an excess width. For example,
for x1=x2= �0�1�, the variance is V =�x1−x2

2/4 and hence, the actual range
V= �0�0�25�. On the other hand, E= �0�1�, hence

�x1−E2+�x2−E2

2
= �0�1�⊃ �0�0�25��

More sophisticated methods of interval computations also sometimes lead to an ex-
cess width, and the reason for this as that the corresponding optimization problem
is NP-hard:

THEOREM 1. Computing V is NP-hard.

Comment. The main ideas of the proofs of the results from this section are given in
[1].

The very fact that computing the range of a quadratic function is NP-hard
was first proven by Vavasis [16] (see also [7]). We have shown that this diffi-
culty happens even for very simple quadratic functions frequently used in data
processing.

A natural question is: maybe the difficulty comes from the requirement that
the range be computed exactly? In practice, it is often sufficient to compute, in a
reasonable amount of time, a usefully accurate estimate Ṽ for V , i.e., and estimate
Ṽ which is accurate with a giver accuracy �>0 �

∣∣∣Ṽ −V
∣∣∣��. Alas, for any �,

such computations are also NP-hard:

THEOREM 2. For every �>0, the problem of computing V with accuracy � is
NP-hard.

It is worth mentioning the V can be computed exactly in exponential time O�2n:

THEOREM 3. There exists an algorithm that computes V in exponential time.

For computing V , there is a feasible algorithm: specifically, our algorithm is quad-
ratic time, i.e., it requires O�n2 computational steps (arithmetic operations or
comparisons) for n interval data points xi= �xi�xi�.

The algorithm � is as follows:
• First, we sort all 2n values xi�xi into a sequence x�1�x�2� ···�x�2n.
• Second, we compute E and E and select all “small intervals” �x�k�x�k+1�

that intersect with �E�E�.
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• For each of the selected small intervals �x�k�x�k+1�, we compute the ratio
rk=Sk/Nk, where

Sk

def= ∑
i�xi�x�k+1

xi+
∑

j�xj�x�k

xj

and Nk is the total number of such i’s and j’s If rk∈ �x�k�x�k+1�, then we
compute

Vk

def= 1
n
·

 ∑

i�xi�x�k+1

�xi−rk
2+ ∑

j�xj�x�k

�xj−rk
2


�

If Nk=0, we take Vk

def= 0.
• Finally, we return the smallest of the values Vk as V .

THEOREM 4. The algorithm � always compute V is quadratic time.

NP-hardness of computing V means, crudely speaking, that there are no gen-
eral ways for solving all particular cases of this problem (i.e., computing V ) in
reasonable time.

However, we show that there are algorithms for computing V for many reas-
onable situations. Namely, we propose an efficient algorithm that computes V
for the case when all the interval midpoints (“measured values”) x̃i=�xi+xi/2
are definitely different from each other, in the sense that the “narrowed” intervals
�x̃i−�i/n�x̃i+�i/n� — where �i=�xi−xi/2 is the interval’s half-width —
do not intersect with each other.

The algorithm � is as follows:
• First, we sort all 2n endpoints of the narrowed intervals x̃i−�i/n and x̃i+

�i/n into the sequence x�1�x�2� ···�x�2n. This enables us to divide
the real line into 2n+1 segments (“small intervals”) �x�k�x�k+1�, where we

denoted x�0
def=−� and x�2n+1

def=+�.
• Second, we compute E and E and pick all “small intervals” �x�k�x�k+1� that

intersect with �E�E�.
• For each of remaining small intervals �x�k�x�k+1�, for each i from 1 to n, we

pick the following value of xi:
• if x�k+1 <x̃i−�i/n, then we pick xi=xi;
• if x�k >x̃i+�i/n, then we pick xi=xi;
• for all other i, we consider both possible values xi=xi and xi=xi.

As a result, we get one or several sequences of xi. For each of these se-
quences, we check whether the average E of the selected values x1�����xn

is indeed within this small interval, and if it is, compute the variance by using
the formula (1).

• Finally, we return the largest of the computed variances as V .
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THEOREM 5. The algorithm � computes V is quadratic time for all the cases in
which the “narrowed” intervals do not intersect with each other.

The algorithm also works when, for some fixed k, no more than k “narrowed”
intervals can have a common point:

THEOREM 6. For every positive integer k, the algorithm � computes V is quad-
ratic time for all the cases in which no more than k “narrowed” intervals can have
a common point.

3. Important example: Interval computations related to privacy in statistical
databases

2.1. NEED FOR PRIVACY

Privacy is an important issue in the statistical analysis of human-related data. For
example, to check whether in a certain geographic area, there is a gender-based
discrimination, we can use the census data to check, e.g., whether for all people
from this area who have the same level of education, there is a correlation between
salary and gender. One can think of numerous possible questions of this type re-
lated to different sociological, political, medical, economic, and other questions.
From this viewpoint, it is desirable to give researches ability to perform whatever
statistical analysis of this data that is reasonable for their specific research.

On the other hand, we do not want to give them direct access to the raw census
data, because a large part of the census data is confidential. For example, for most
people (those who work in the private sector) salary information is confidential.
Suppose that a corporation is deciding where to build a new plant and has not yet
decided between two possible areas. This corporation would benefit from knowing
the average salary of people of needed education level in these two areas, because
this information would help them estimate how much it will cost to bring local
people on board. However, since salary information is confidential, the company
should not be able to know the exact salaries of different potential workers.

The need for privacy is also extremely important formedical experiments, where
we should be able to make statistical conclusions about, e.g., the efficiency of a
new medicine without disclosing any potentially embarrassing details from the
individual medical records.

Such databases in which the outside users have cannot access individual records
but can solicit statistical information are often called statistical databases.
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3.2. PRIVACY LEADS TO INTERVALS

A natural way to fully describe a single real-valued random variable " is to provide
the values of its cumulative density function (CDF)

F�x=Prob�"�x

for all possible real numbers x. Once we know F�x, we can determine the values
of all possible statistical characteristics of this random variable — e.g., its first
moment, second moment, variance, etc. This, it is natural to allow the users to
solicit the values of F�x for different x; from this information, the users will be
able to reconstruct all other statistical characteristics.

For discrete data x1�����xn, the corresponding sample distribution — in which
each value xi occurs with probability 1/n — is described by the CDF F�x for
which

F�x=�1/n·#�i �xi�x��

To get the full information about the data, we should allow the user to ask for the
values F�x for all possible real numbers x. However, once we know the values
F�x for all x, we can determine all the values xi. Thus, if we want to keep
privacy, we must only allow the users to know F�x for some fixed values x�1�

···�x�m. This way, instead of the actual values xi, all we know is an interval
�x�k�x�k+1� that contains xi. Intervals corresponding to different values are almost
disjoint, i.e., either disjoint (intersect in at most one point) or identical. How can
we compute statistical characteristics based on this information?

THEOREM 7. There exists a quadratic-time algorithm that computes the exact
range V of variance V for the case when intervals xi of possible values of xi are
pairwise almost disjoint.

Proof. Since there exists an algorithm that computes V in feasible time, it is
sufficient to produce a feasible algorithm for computing V .

According to the proof of Theorems 4.1 and 4.2 from [1], the values xi∈xi

that lead to the largest possible value of V satisfy the following property:
• if E�xi, then xi=xi;
• if E�xi, then xi=xi;• if E∈�xi�xi, then xi=xi or xi=xi.

In order to use this property to compute V , we test all possible locations of E
in relation to the intervals xi � E=xi, E=xi and E∈�xi�xi for different
i=1�2�����n.

Let us first consider the cases when E=xi (the case when E=xi is treated
similarly). In these case, since the intervals xi are almost disjoint, the above prop-
erty uniquely determines the values xi; thus, we can compute E, check whether it
indeed satisfies the corresponding condition, and if yes, compute the corresponding
value V .
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Let us now consider the cases when E∈�xi�xi. Let k denote the number of
different intervals of such type, and let xj , j=1�����k denote the number of in-
tervals xi that coincide with j-th interval. Then, n=n1+···+nk. For each of these
k intervals xj , the values of xi are uniquely determined when xj �xi or xi�xj ;
for the remaining nj values xi, we have xi=xi or xi=xi. Modulo transposition,
the resulting set of values �x1�����xn� is uniquely determined by how many of
these nj xi’s are equal to xi. The number of such xi’s can be 0�1�2�����nj+1.
Thus, the total number of such combinations is equal to nj+1. Overall, for all j
from 1 to k, we have

∑k
j=1�nj+1=∑k

j=1nj+k=n+k�2n resulting sets
�x1�����xn�. For each of these sets, we compute E, check that the resulting E is
indeed inside the corresponding interval xi, and if it is, we compute V .

Thus, we have �2n+n=3n cases, for each of which we need O�n compu-
tations to compute V . The largest of these V is the desired V , and we compute it
in time �3n·O�n=O�n2. The proposition is proven. �

Comment. Similar algorithms can be providing for computing the exact range of
covariance between two interval-valued data sequences; in general, the problem of
computing the range for covariance is NP-hard [1].

4. Second step beyond intervals: extension of interval arithmetic to
situations with partial information about probabilities

4.1. PRACTICAL PROBLEM

In some practical situations, in addition to the lower and upper bounds on each
random variable xi, we know the bounds Ei= �Ei�Ei� on its mean Ei

Indeed, in measurement practice (see e.g. [14]), the overall measurement error
�x is usually represented as a sum of two components:

• a systematic error component �sx which is defined as the expected value
E��x�, and

• a random error component �rx which is defined as the difference between
the overall measurement error and the systematic error component �rx

def=
�x−�sx.

In addition to the bound � on the overall measurement error, the manufacturers of
the measuring instrument often provide an upper bound �s on the systematic error
component: ��sx���s.

The additional information is provided because, with this additional informa-
tion, we not only get a bound on the accuracy of a single measurement, but we
also get an idea of what accuracy we can attain if we use repeated measurements
to increase the measurement accuracy. Indeed, the very idea that repeated meas-
urements can improve the measurement accuracy is natural: we measure the same
quantity by using the same measurement instrument several �N  times, and then
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take, e.g., an arithmetic average x=�x̃�1+···+ x̃�N /N of the corresponding
measurement results x̃�1=x+�x�1�����x̃�N=x+�x�N.

• If systematic error is the only error component, then all the measurements
lead to exactly the same value x̃�1= ���x̃�N , and averaging does not change
the value — hence does not improve the accuracy.

• On the other hand, if we know that the systematic error component is 0, i.e.,
E��x�=0 and E�x̃�=x, then, as N →�, the arithmetic average tends
to the actual value x. In this case, by repeating the measurements sufficiently
many times, we can determine the actual value of x with an arbitrary given
accuracy.

In general, by repeating measurements sufficiently many times, we can arbitrarily
decrease the random error component and thus attain accuracy as close to �s as we
want.

When this additional information is given, then, after we performed a measure-
ment and got a measurement result x̃, then not only we get the information that the
actual value x of the measured quantity belongs to the interval x= �x̃−��x̃+��,
but we can also conclude that the expected value of x= x̃−�x (which is equal to
E�x�= x̃−E��x�= x̃−�sx belongs to the interval E= �x̃−�s�x̃+�s�.

If we have this information for every xi, then, in addition to the interval y of pos-
sible value of y, we would also like to know the interval of possible values of E�y�.
This additional interval will hopefully provide us with the information on how
repeated measurements can improve the accuracy of this indirect measurement.
This, we arrive at the following problem.

4.2. RESULTING OPTIMIZATION PROBLEM

In more optimization terms, we want to solve the following problem: given an al-
gorithm computing a function f �x1�����xn from Rn to R; and values x1�x1�����
xn�xn�E1�E1�����En�En, we want to find

E
def=min�E�f �x1�����xn��alldistributionsof �x1�����xn forwhich

x1∈ �x1�x1������xn∈ �xn�xn�� E�x1�∈ �E1�E1�����E�xn�∈ �En�En���

and E which is the maximum of E�f �x1�����xn� for all such distributions.
In addition to considering all possible distributions, we can also consider the

case when all the variables xi are independent.

4.3. ANALOG OF STRAIGHTFORWARD INTERVAL COMPUTATIONS

The main idea behind straightforward interval computations can be applied here
as well. Namely, first, we find out how to solve this problem for the case when
n=2 and f �x1�x2 is one of the standard arithmetic operations. Then, once we
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have an arbitrary algorithm f �x1�����xn, we parse it and replace each element-
ary operation on real numbers with the corresponding operation on quadruples
�x�E�E�x.

To implement this idea, we must therefore know how to solve the above prob-
lem for elementary operations.

4.4. SOLUTION

For addition, the answer is simple. Since E�x1+x2�=E�x1�+E�x2�, if y=x1+x2,
there is only one possible value for E=E�y�: the value E=E1+E2. This value
does not depend on whether we have correlation or not, and whether we have any
information about the correlation. Thus, E=E1+E2.

Similarly, the answer is simple for substraction: if y=x1−x2, there is only
one possible value for E=E�y�: the value E=E1−E2. Thus, E=E1−E2.

For multiplication, if the variables x1 and x2 are independent, then E�x1 ·x2�=
E�x1�·E�x2�. Hence, if y=x1 ·x2 and x1 and x2 are independent, there is only
one possible value for E=E�y�: the value E=E1 ·E2; hence E=E1 ·E2.

The first non-trivial case is the case of multiplication in the presence of possible
correlation. When we know the exact values of E1 and E2, the solution to the above
problem is as follows:

THEOREM 8. For multiplication y=x1 ·x2, when we have no information about
the correlation.

E = max�p1+p2−1�0·x1 ·x2+min�p1�1−p2·x1 ·x2+min�1−p1�p2·x1 ·x2+max�1−p1−p2�0·x1 ·x2�

and

E = min�p1�p2·x1 ·x2+max�p1−p2�0·x1 ·x2+max�p2−p1�0·x1 ·x2+min�1−p1�1−p2·x1 ·x2�

where pi

def= �Ei−xi/�xi−xi.
Proof. Let us show that a general distribution with E�xi�=Ei can be simplified

without changing the values E�xi� and E�x1 ·x2�. Thus, to describe possible values
of E�x1 ·x2�, we do not need to consider all possible distributions, it is sufficient to
consider only the simplified ones.

We will describe the simplification for discrete distribution that concentrate
on finitely many points x�j=�x

�j
1 �x

�j
2 �1�j�N . An arbitrary probability

distribution can be approximated by such distributions, so we do not lose anything
by this restriction.

So, we have a probability distribution in which the point x�1 appears with the
probability p�1, the point x�2 appears with the probability p�2, etc. Let us modify
this distribution as follows: pick a point x�j=�x

�j
1 �x

�j
2  that occurs with probab-

ility p�j, and replace it with two points: x�j=�x1�x
�j
2  with probability p�j ·p�j
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and x�j=�x1�x
�j
2  with probability p�j ·p�j, where p�j def= �x

�j
1 −x1/�x1−x1

and p�j def= 1−p�j:

Here, the values p�j and p�j=1−p�j are chosen in such a way that p�j ·x1

+p�j ·x1=x
�j
1 . Due to this choice, p�j ·p�j ·x1+p�j ·p�j ·x1=p�j ·x�j

1 , hence
for the new distribution, the mathematical expectation E�x1� is the same as for
the old one. Similarly, we can prove that the values E�x2� and E�x1 ·x2� do not
change.

We started with a general discrete distribution with N points for each of which
p

�j
1 could be inside the interval x1, and we have a new distribution for which

�N −1 points have the value x1 inside this interval. We can perform a similar
replacement for all N points and get a distribution with the same values of E�x1��
E�x2�, and E�x1 ·x2� as the original one but for which, for every point, x1 is equal
either to x1, or to x1.

For the new distribution, we can perform a similar transformation relative to x1

and end up — without changing the values x1 — with the distribution for which
always either x2=x1 or x2=x2:

Thus, instead of considering all possible distributions, it is sufficient to consider
only distributions for which x1∈�x1�x1� and x2∈�x2�x2�. In other words, it is
sufficient to consider only distributions which are located in the four corner points
�x1�x2��x1�x2��x1�x2 and �x1�x2 of the box x1×x2.
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Such distribution can be characterized by the probabilities of these four points.
These four probabilities must satisfy 3 conditions: that their sum is 1, that E�x1� is
E1, and that E�x2�=E2. Thus, we only have one parameter left; optimizing with
respect to this parameter, we get the desired formulas for E and E. The theorem is
proven. �

When we only know the intervals Ei of possible values of Ei, instead of the values
pi, we have the corresponding intervals pi=�Ei−xi/�Ei−xi. In terms of these
intervals, we get the following results

THEOREM 9. For multiplication under no information about dependence, to find
E, it is sufficient to consider the following combinations of p1 and p2:

• p1=p
1

and p2=p
2
; p1=p

1
and p2=p2; p1=p1 and p2=p

2
;

p1=p1 and p2=p2

• p1=max�p
1
�1−p2 and p2=1−p1 (if 1∈p1+p2); and

• p1=min�p1�1−p
2
 and p2=1−p1 (if 1∈p1+p2).

The smallest value of E for all these cases is the desired lower bound E.

THEOREM 10. For multiplication under no information about dependence, to
find E, it is sufficient to consider the following combinations of p1 and p2:

• p1=p
1

and p2=p
2
; p1=p

1
and p2=p2; p1=p1 and p2=p

2
;

p1=p1 and p2=p2;
• p1=p2=max�p

1
�p

2
 (if p1∩p2 �=∅; and

• p1=p2=min�p1�p2 (if p1∩p2 �=∅.
The largest value of E for all these cases is the desired upper bound E.
Proof. We will prove Theorem 10; the proof of Theorem 9 is similar. The for-

mula for E given in Theorem 8 can be simplified if we consider two cases: p1�p2

and p1�p2. To find the largest possible value E of E, it is sufficient to consider
the largest possible values for each of these cases, and then take the largest of the
resulting two numbers.

In each case, for a fixed p2, the formula is linear in p1. To find the maximum of
a linear function on an interval, it is sufficient to consider this interval’s endpoints.
Thus, the maximum in p1 is attained when either p1 attains its smallest possible
value p

1
, or when p1 attains the largest possible value within this case; depending

on p2, this value is either p1=p1 or p1=p2.
Thus, to find the maximum for each cases, it is sufficient to consider only the

following cases: p1=p
1
, p1=p1, and p1=p2. Similarly, it is sufficient to

consider only the following cases for p2 � p2=p
2
, p2=p2 and p1=p2.

When p1=p2, the probability p1=p2 can take all possible values from the
intersection p1∩p2. The formula for E is linear in p1, so to find its maximum,
it is sufficient to consider the endpoints of the interval p1∩p2, i.e., the values
p1=p2=max�p

1
�p

2
 and p1=p2 =min�p1�p2. The theorem is proven. �



278 V. KREINOVICH

For the inverse y=1/x, bounds for E can be deduced from convexity [15]: E=
�1/E1�p1/x̄1+�1−p1/x1�.

For min and independent xi, we have E=min�E1�E2 and

E = p1 ·p2 ·min�x1�x2+p1 ·�1−p2·min�x1�x2+�1−p1·p2 ·min��x1�x2+�1−p1·�1−p2·min�x1�x2�

For max and independent xi, we have E=max�E1�E2 and

E = p1 ·p2 ·max�x1�x2+p1 ·�1−p2·max�x1�x2+�1−p1·p2 ·max��x1�x2+�1−p1·�1−p2·max�x1�x2�

For min in the general case, E=min�E1�E2,

E = max�p1+p2−1�0·min�x1�x2+min�p1�1−p2·min�x1�x2+min�1−p1�p2·min�x1�x2+max�1−p1−p2�0·min�x1�x2�

For max in the general case, E=max�E1�E2 and

E = min�p1�p2·max�x1�x2+max�p1−p2�0·max�x1�x2+max�p2−p1�0·max�x1�x2+min�1−p1�1−p2·max�x1�x2�

Similar formulas can be produced for the cases when there is a strong correl-
ation between xi: namely, when x1 is (non-strictly) increasing or decreasing in
x2.

4.5. FROM ELEMENTARY ARITHMETIC OPERATIONS TO GENERAL
ALGORITHMS

When we have a complex algorithm f , then a step-by-step approach leads to excess
width. How can we find the actual range of E=E�y�?

At first glance, the exact formulation of this problem requires that we use finitely
many variables, because we must describe all possible probability distributions on
the box x1×···×xn (or, in the independent case, all possible tuples consisting
of distributions on all n intervals x1�����xn. It turns out, however, that we can
reformulate these problems in equivalent forms that require only finitely many
variables:

THEOREM 11. [9] For a general continuous function f �x1�����xn, E is a solu-
tion to the following optimization problem:

∑n
j=0p

�j ·f �x
�j
1 �����x�j

n →min under
the conditions

n∑
k=0

p�k=1� p�j
�0� xi�x

�j
i �xi� Ei�

n∑
j=0

p�j ·x�j
i �Ei �for all i�j�

and E is a solution to
∑n

j=0p
�j ·f �x

�j
1 �����x�j

n →max under the same
constraints.
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Proof. In terms of the unknown probabilities p�j, we are minimizing a linear
function under linear constraints (equalities and inequalities). Geometrically, the
set of all points that satisfy several linear constraints is a polytope. It is well known
that to find the minimum of a linear function on a polytope, it is sufficient to
consider its vertices (this idea is behind linear programming). In algebraic terms,
a vertex can be characterized by the fact that for N variables, N of the original
constraints are equalities. Thus, in our case, all but n probabilities p�j must be
equal to 0. The theorem is proven. �

5. Open problems

So far, we have provided explicit formulas for the elementary arithmetic opera-
tions f �x1�����xn for the case when we know the first order moments. What if,
in addition to that, we have some information about second order (and/or higher
order) moments of xi? What will we be then able to conclude about the moments
of y? Partial answers to this question are given in [9,15,17]; it is desirable to find a
general answer.

Similarly to Theorem 11, we can reduce the corresponding problems to the
constraint optimization problems with finitely many variables. For example,
when in addition to intervals Ei that contain the first moments E�xi�, we know
the intervals Eik that contain the second moments E�xi ·xk�, then the corre-
sponding bounds E and E on E�y� can be computed by solving the problems∑N

j=0p
�j ·f �x

�j
1 �����x�j

n →min�max under the conditions

N∑
j=0

p�j=1� p�j
�0� xi�x

�j
i �xi� Ei�

n∑
j=0

p�j ·x�j
i �Ei�

Eik�

n∑
j=0

p�j ·x�j
i ·x�j

k �Eik�

where N =n�n+1/2.
It is desirable to find explicit analytical expressions for these bounds, at least

for the case n=2 and f �x1�����xn is an elementary arithmetic operation.
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